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Abstract. We now wish to begin constructing new categories, in the context

of category theory itself, and this give an opportunity to review the limitations

of set theory. In particular, we wish to make precise the concept of “the class
of all sets”. This document describes the problems this notion entails, lists

and discusses the ZFC axioms of set theory, and then briefly lists the axioms

of NBG which may be used to form a valid class theory.

1. Set Theory Paradoxes

As the usage of the vocabulary of sets became more frequent during the latter
half of the 19th century, various problems occurred when claims were made about
sets which were constructed without proper justification. These paradoxes led to
vigorous attempts to lay a firmer foundation for set theory. We give two of the
more famous paradoxes, both involving the impossibility of a set of all sets.

1.1. Russell’s Paradox. Suppose that V is a set which contains all sets. We note
that V is an element of itself, that is, V ∈ V ; but this is not where we find the
paradox.

Construct the set
W = {A ∈ V | A /∈ A}.

Since W is a set, we see that W ∈ V . Now either W ∈W or W /∈W .
But if W ∈W , then the condition for being in W is not met by W , so W /∈W ,

a contradiction. On the other hand, if W /∈ W , then the condition for being in W
is met by W , so W ∈ W , also a contradiction. So something is wrong; either our
method of forming the subset W is not allowable, or V itself does not exist.

1.2. Power Sets. Let X be any set. We also wish to be able to form the set of all
subsets of X, which we label P(X). The power set is bigger than the original set,
in the sense that there is no surjective function from X to P(X). To see this, let
f : X → P(X) be any function; we show that f is not surjective.

Define the subset A ⊂ X by

A = {x ∈ X | x /∈ f(x)}.
Suppose that f(a) = A for some a ∈ X. Then either a ∈ A or a /∈ A. If a ∈ A, then
a /∈ f(a) = A, a contradiction. If a /∈ A, then a ∈ f(a) = A, also a contradiction.
Thus it cannot be the case that f(a) = A for any a ∈ X. Therefore, f is not
surjective.

However, if X ⊂ Y is nonempty, then there exists a surjective function Y → X
by mapping y → y if y ∈ X and y → x0 otherwise, for some fixed x0 ∈ X.

Now suppose that V is a set which contains all sets. Then P(V ) ⊂ V , so we can
build a surjective function V → P(V ). Herein lies the paradox of V .

Date: February 3, 2018.
1



2

2. ZFC Axioms

The Zermelo-Fraenkel axioms are intended to place set theory on a solid logical
foundation. Together with the Axiom of Choice, these form the ZFC axioms of set
theory, upon which the bulk of modern mathematics is based. It should be noted
that there is some variation in the literature as to exactly which axioms to list; the
list here is logically equivalent to other versions.

The primitive entity of ZFC is a set. If a and s are sets, the sentence a ∈ s is
defined, and is either true or false.

Axiom 1 (Axiom of Extension). Two sets are equal if and only if they have the
same elements.

∀A,∀B : A = B ⇐⇒ (∀C : C ∈ A⇔ C ∈ B)

Axiom 2 (Axiom of the Existence). There is a set with no elements.

∃∅,∀x : ¬(x ∈ ∅)

Axiom 3 (Axiom of Pairing). If A and B are sets, then there is a set containing
A and B as its only elements.

∀A,∀B, ∃C,∀D : D ∈ C ⇐⇒ (D = A ∨D = B)

Axiom 4 (Axiom of Union). If A is a set, there is a set whose elements are precisely
the elements of the elements of A.

∀A,∃B, ∀C : C ∈ B ⇐⇒ (∃D : C ∈ D ∧D ∈ A)

Axiom 5 (Axiom of Infinity). There is a set S such that ∅ is in S and whenever
A is in S, so is A ∪ {A}.

∃S : ∅ ∈ S ∧ (∀A : A ∈ S ⇒ A ∪ {A} ∈ S)

Axiom 6 (Axiom of Powers). If A is a set, there is a set whose elements are
precisely the subsets of A.

∀A,∃P(A),∀B : B ∈ P(A) ⇐⇒ (∀C : C ∈ B ⇒ C ∈ A)

Axiom 7 (Axiom of Regularity). If A is a nonempty set, there is an element of A
which is disjoint from A.

∀A : ¬(A = ∅)⇒ (∃B : B ∈ A ∧ ¬(∃C : C ∈ A ∧ C ∈ B))

Axiom 8 (Axiom of Specification). Given any set A and any proposition p(x),
there is a subset of A containing precisely those x for which p(x) is true.

∀A,∃B, ∀C : C ∈ B ⇐⇒ C ∈ A ∧ p(C).

Axiom 9 (Axiom of Replacement). Given any set A and any proposition p(x, y)
where p(x, y1) and p(x, y2) implies y1 = y2, there is a set containing precisely those
y for which p(x, y) is true for some x in A.

Axiom 10 (Axiom of Choice). Given any set of nonempty sets, there is a set the
contains exactly one element in each of the nonempty sets.
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3. Remarks regarding ZFC

The axioms dictate how new sets can be formed from existing sets. Let us take
a moment to see how various well known examples play out in this context.

Axiom 1 tells us when two sets are equal. Axiom 2 declares the existence of
the empty set. Axiom 5 declares the existence of an infinite set. Axiom 7 declares
the nonexistence of certain sets. Axioms 3, 4, 6, 8, 9, and 10 supply the means of
constructing new sets from existing ones.

3.1. The Axiom of Extension. Axiom 1 is the Axiom of Extension, which says
that a set is completely determined by its elements. Thus, even though we may
sometimes think of a set as a list of elements, we need to keep in mind that the order
in which the elements are listed is not information included in the set; moreover,
listing an element more than once has no effect on the set.

3.2. The Axiom of Existence. Axiom 2 is the Axiom of the Existence, also know
as the Axiom of the Empty Set, which asserts that the empty set exists. Since a
set is completely determined by the elements it contains, the empty set is unique.

The existence of the empty set can be deduced from Axiom 5 (Infinity) and Ax-
iom 8 (Specification); however, since Axiom 5 appears to presuppose the existence
of the empty set, we feel it is more readable to first include Axiom 2 (Existence).

We call this the Axiom of Existence because it is the only axiom that states that
a set exists. Strictly speaking, all sets that are known to exist within ZFC are
build from the empty set and the remaining axioms.

Axiom 5 (the Axiom of Infinity) also supplies an existing set, which happens
to contain ∅. We note that the existence of ∅ actually follows from Axiom 8
(the Axiom of Specification) together with the existence of any set X, because
∅ = {x ∈ X | x 6= x}.

3.3. The Axiom of Specification. Axiom 8 is the Axiom of Specification, also
known as the Axiom of Separation, the Axiom of Comprehension, or the Axiom
of Subsets. This tells us how we may build sets based on a logical proposition.
It avoids Russell’s Paradox by demanding that the set we build is a subset of an
existing set.

3.4. The Axioms of Union and Pairing. A collection of sets is a set containing
other sets; in formal set theory, all elements are sets, so a collection is just a set,
but the word collection is still psychologically useful.

Given a collection C of sets, Axiom 4 (Union) states that the union of the sets
in the collection exists. Combine this with Axiom 8 (Specification) to deduce that
the intersection of the sets in the collection exists. We denote the union by ∪C and
the intersection by ∩C.

Now if we are given two sets, we can use Axiom 3 (Pairing) to form a collection
whose elements are these two sets, and then we can take the union or intersection.
So the union and intersection of two sets exist. We can repeat this to see that the
union and intersection of finitely many sets exist.

3.5. The Axiom of Regularity. Axiom 7, the Axiom of Regularity, rules out
certain constructions from being sets. In particular, one can conclude that there
is no set A such that A = {A}, relieving us from trying to understand the phrase
“It’s turtles all the way down”.
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3.6. The Axiom of Replacement. Axiom 9 is the Axiom of Replacement; it
asserts that the image of a set under any definable function is also a set. The
axiom of replacement was not part of Ernst Zermelo’s 1908 axiomatization of set
theory (Z). Its introduction by Adolf Fraenkel in 1922 is what makes modern set
theory Zermelo-Fraenkel set theory (ZF).

3.7. The Axiom of Choice. Axiom 10 is the Axiom of Choice; it is the addition
of this axiom that turns ZF into ZFC. In the presence of ZF, the Axiom of Choice
is equivalent to each the following statements.

• The Cartesian product of any family of nonempty sets is nonempty.
• Every surjective function has a right inverse.
• Well-Ordering Theorem: Every set can be well-ordered.
• Tarkski’s Thorem: For every infinite set A, there is a bijective map between
A and A×A.
• Hausdorff Maximality Principle: In any partially ordered set, every totally

ordered subset is contained in a maximal totally ordered subset.
• Zorn’s Lemma: Any partially ordered set in which every chain (totally

ordered subset) has an upper bound contains a maximal element.

4. Set Based Structures

We will use all of the set based structures which you have studied earlier. Any
doubt as to the existence of such structures can be put to rest using the axioms of
set theory. We list some of what will be used:

• Notions of subsets, the empty set, and power sets
• Set operations, including union, intersection, and complement
• Collections of sets and partitions
• Cartesian products of sets
• Functions and their properties

– Injective, surjective, and bijective
– Image and preimage
– Identity map, inverse functions

• Relations and their properties
– Reflexive, Symmetric, Antisymmetric, Transitive, and Definite
– Partial orders and total orders
– Equivalence relations

• Binary operations
– identities and inverses
– commutativity, associativity, and distributivity
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5. Numbers

5.1. The Natural Numbers. The axioms are sufficient to declare the existence of
the natural numbers. The natural numbers may be defined by setting 0 equal to the
empty set given by Axiom 2 (Existence), and for each natural number n previously
defined, we define the successor of n+ = n ∪ {n}. Now Axiom 5 (Infinity) states
that there exists a set containing 0 and all of its successors; call this set S. By
Axioms 8 and 6 (Specification and Powers), the following set exists:

T = {T ∈ P(S) | T contains 0 and all of its successors}.

By the previous comment, the following set exists:

N = ∩T.

This N is a minimal set containing 0 and all of its successors; it is the set of natural
numbers.

Let N denote the set of natural number. We define addition and multiplication
on N using recursion, via a set-theoretic theorem known as the recursion theorem.
We define order on N by inclusion: m ≤ n if an only if m ⊂ n.

5.2. The Integers. The integers are formed from the natural numbers using an
equivalence relation on ordered pairs of integers. Specifically, we think of an ordered
pair (a, b) as the integer a − b, but since we don’t have subtraction yet, we use
addition to set up the integers.

Define a relation on the set N× N by

(a, b) ∼ (c, d) ⇔ a + d = b + c.

This is an equivalence relation. Let [a, b] denote the equivalence class of (a, b).
Define additional and multiplication by

[a, b] + [c, d] = [a + c, b + d] and [a, b] · [c, d] = [ac + bd, ad + bc].

Define order on the set of equivalence classes by

[a, b] ≤ [c, d] ⇔ a + d ≤ b + c.

Let Z denote the set of integers, defined to be this set of equivalence classes.
Finally, embed N in Z via n 7→ [n, 0], and identify N with its image under this map.
It is convenient to set Z∗ = Z r {0}.

5.3. The Rational Numbers. The rational numbers are formed similarly; we
define an equivalence relation on Z× Z∗ by

(a, b) ∼ (c, d) ⇔ ad = bc.

Here (a, b) represents the rational number a/b. Let [a, b] denote the equivalence
class of (a, b). Define additional and multiplication by

[a, b] + [c, d] = [ad + bc, bd] and [a, b] · [c, d] = [ac, bd].

Define order on the set of equivalence classes by

[a, b] ≤ [c, d] ⇔ ad ≤ bc.

Let Q denote the set of rational numbers, defined to be this set of equivalence
classes. Embed Z into Q via n 7→ [n, 1].
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5.4. The Real Numbers. The real numbers are the geometric completion of the
rational numbers. They are designed to correspond to the set of all possible dis-
tances (forward and backward) on a line.

The need to formally define the real numbers was explored by Cantor and
Dedekind at the end of the 19th century. There are two common methods to
make the leap from rationals to reals; we may use the Dedekind completeness ax-
iom, which say that every subset of the real number which is bounded above has a
least upper bound, or we may use the Cauchy completeness axiom, which says that
a Cauchy sequence of real numbers converges inside the reals. We outline the first
approach.

A Dedekind cut is a subset of the rational numbers, C ⊂ Q, which is bounded
above but has no maximum element, with the property that if a, b ∈ Q with a < b
and b ∈ C, then a ∈ C. These in effect are all the rational numbers less than a
given (intended) real number. This allows us to find the “gaps” in the rational
number line, where the irrational numbers may be found. Thus a cut corresponds
to a rational number if its complement in Q contains a minimal element; otherwise,
it corresponds to an irrational number. Addition and multiplication are defined
setwise, with appropriate modifications to deal with negative numbers. Order is
inclusion.

We let R equal the set of all Dedekind cuts.

5.5. The Complex Numbers. The complex numbers are the algebraic comple-
tion of the real numbers; this means that it is possible to solve any polynomial
equation over the complex numbers. Complex number are appropriately viewed
as ordered pairs of R; that is, C = R2, endowed with the additional structure of
complex multiplication.
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5.6. The Cardinal Numbers. Let X and Y be sets. We say that X and Y
have the same cardinality, and write |X| = |Y |, if there exists a bijective function
X → Y . Moreover, we say that the cardinality of X is less than or equal to that of
Y , and write |X| ≤ |Y |, if there exists an injective function X → Y .

The famous Schöeder Bernstein Theorem states that if there exists an injective
function X → Y and an injective function Y → X, then there exists a bijective
function X → Y . Thus, if |X| ≤ |Y |, and |Y | ≤ |X|, we know that |X| = |Y |. This
can be shown without the use of the Axiom of Choice.

However, suppose we do not assume the Axiom of Choice. Then it is impossible
to show that there is either an injective function X → Y or an injective function
Y → X. Similarly, it is impossible to prove that there is either an injective function
X → Y or a surjective function X → Y . So, without the Axiom of Choice, we
cannot say that either |X| ≤ |Y |, or |Y | ≤ |X|. The relative sizes of X and Y may
be incomparable. However, with the axiom of choice, either |X| ≤ |Y | or |Y | ≤ |X|.

Within ZFC, given a “universal” set U , it is possible to define the set of cardinal
numbers in U as follows. Let U = P(U) be the power set of U . Consider the relation
↔ on U given by

X ↔ Y ⇔ ∃ bijective function X → Y.

This is clearly an equivalence relation on U, so it forms a partition of U. Let X
denote the equivalence class of X, and let U denote the set of equivalence classes.
Then X ↔ Y ⇔ X = Y ⇔ |X| = |Y |. Now we define |X| to be equal to
X, in which case we call |X| the cardinal number of X. We may define a relation

on U by
X ≤ Y ⇔ ∃ injective function X → Y.

This relation is well-defined; moreover, it satisfies

• X ≤ Y or Y ≤ X (Definiteness)
• X ≤ Y and Y ≤ X implies X = Y (Antisymmetry)
• X ≤ Y and Y ≤ Z implies X ≤ Z (Transitivity)

These properties say that ≤ is a total order relation on U. The totality property
depends on the Axiom of Choice; without it, we have only a partial order.
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6. Classes

It quickly became apparent that the lack of a universal set is a drawback of
Zermelo’s set theory. Various re-axiomatizations were proposed to remedy this. In
articles published in 1925 and 1928, John von Neumann restated axioms adequate
to develop set theory. This evolved to become what is now called von Neumann-
Bernays-Gödel set theory (NBG), which is a conservative extension of ZFC.

The primitive entity of NBG is the class. A set is a class that may be an element
of another class. Other classes are called proper classes.

Let a and s be two individuals. Then the atomic sentence a ∈ s is defined if a is
a set and s is a class. In other words, a ∈ s is defined unless a is a proper class.

We list the axioms of NBG which apply specifically to classes; the remaining
axioms are equivalent to ZFC for the classes which are sets.

Axiom 11. (Axiom of Class Extensionality)
Two classes are equal if and only if they have the same elements.

Axiom 12. (Axiom of Class Foundation)
Each nonempty class is disjoint from at least one of its elements.

Axiom 13. (Axiom of Class Comprehension)
Given any proposition p(x), which is true or false for each set x, there is a class
whose elements are precisely those sets x for which p(x) is true.

Axiom 14. (Axiom of Limitation of Size)
A class C is a set if and only if there is no bijection between C and the class V of
all sets.

Note that the class V of all sets exists by the Axiom of Class Comprehension,
where p(x) = “x is a set”.
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